Transfer Learning Across Patient Variations with Hidden Parameter Markov Decision Processes

نویسندگان

  • Taylor W. Killian
  • George Konidaris
  • Finale Doshi-Velez
چکیده

Due to physiological variation, patients diagnosed with the same condition may exhibit divergent, but related, responses to the same treatments. Hidden Parameter Markov Decision Processes (HiP-MDPs) tackle this transfer-learning problem by embedding these tasks into a low-dimensional space. However, the original formulation of HiP-MDP had a critical flaw: the embedding uncertainty was modelled independently of the agent’s state uncertainty, requiring an unnatural training procedure in which all tasks visited every part of the state space—possible for robots that can be moved to a particular location, impossible for human patients. We update the HiP-MDP framework and extend it to more robustly develop personalized medicine strategies for HIV treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes

We introduce a new formulation of the Hidden Parameter Markov Decision Process (HiP-MDP), a framework for modeling families of related tasks using lowdimensional latent embeddings. Our new framework correctly models the joint uncertainty in the latent parameters and the state space. We also replace the original Gaussian Process-based model with a Bayesian Neural Network, enabling more scalable ...

متن کامل

Thompson Sampling for Learning Parameterized Markov Decision Processes

We consider reinforcement learning in parameterized Markov Decision Processes (MDPs), where the parameterization may induce correlation across transition probabilities or rewards. Consequently, observing a particular state transition might yield useful information about other, unobserved, parts of the MDP. We present a version of Thompson sampling for parameterized reinforcement learning proble...

متن کامل

Learning genetic algorithm parameters using hidden Markov models

Genetic algorithms (GAs) are routinely used to search problem spaces of interest. A lesser known but growing group of applications of GAs is the modeling of so-called ‘‘evolutionary processes’’, for example, organizational learning and group decision-making. Given such an application, we show it is possible to compute the likely GA parameter settings given observed populations of such an evolut...

متن کامل

A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes

We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.00475  شماره 

صفحات  -

تاریخ انتشار 2016